

IDCA-10

Intelligent Brushed DC Motor Drive

Motor Control Technologies; LLC

www.mocontech.com

November, 2010 Rev 1.0 1

http://www.mocontech.com/

Motor Control Technologies, LLC (MCT) designs and manufacturers motor
drives used to power and control DC motors or similar resistive or inductive
loads. MCT products include various inherent safety mechanisms. However,
MCT products are not designed as fail-safe components and are not for use
in critical equipment or life-support systems. Any use of MCT products in
such applications is done solely at the risk of the user.

MCT products are not to be used in any and all activities related to the
following fields: medical, military, aviation, aerospace, or government. Those
using MCT products in the above-described fields do so at their own risk and
agree to hold MCT harmless with respect to any possible bodily injury or
property damage that may occur.

Customers are responsible for their applications when using MCT products.
In order to decrease the likelihood of application and/or product failure,
customers should supply proper design, automation, and operation
safeguards. MCT shall not be liable for any personal injury or property loss
that results from misuse, abuse, misapplication, or misconnection by the
customer or damage that is attributable to acts of God.

The information contained within this manual is for informational purposes
only and cannot be reproduced, in any form, without the written permission of
Motor Control Technologies, LLC.

November, 2010 Rev 1.0 2

Table of Contents
Table of Contents..3

List of Figures ...3

List of Tables...4

1. Overview ..5
1.1. IDCA-10 Product Description ...5
1.2. IDCA-10 Software and Firmware ...7

2. IDCA-10 Top Plate ...8
2.1. Pin Descriptions ...8
2.2. Status Indicators ..10
2.3. Electrical Connections..10

3. Operating Modes ...16
3.1. Idle (default) ...16
3.2. Open-loop Control..16
3.3. Closed-loop Speed Control ..17
3.4. Closed-loop Position Control..17
3.5. Stand-alone Mode..21

4. Serial Communications...23
4.1. SPI Communications..23
4.2. SMBus (I2C) Communications..23
4.3. Configuring Serial Bus Protocol ...24
4.4. Data Transfer ...25
4.5. Instruction Packet Definitions...28
4.6. MCT Op-codes Definitions ...43

5. IDCA-10 Memory Registers...48
5.1. Read Only Registers ..48
5.2. Read/Write Registers ...49

Appendix A – PID Controller Basics ...56

Appendix B – IDCA-10 Error Code Definitions...58

Appendix C – Electrical Characteristics ...59

Appendix D - Mechanical Drawings ..62

Revision History..63

List of Figures
Figure 1. IDCA-10 block diagram...5
Figure 2. PC-based system operation..6
Figure 3. Microcontroller system operation. ...6
Figure 4. Stand alone operation...6
Figure 5. Screen shot for the MCTUI. ..7
Figure 6. IDCA-10 screw terminals. ...8

November, 2010 Rev 1.0 3

Figure 7. Typical electrical connections for open-loop control.11
Figure 8. Typical electrical connections for speed and position control.12
Figure 9. Typical connection to the analog input line. ..13
Figure 10. Typical limit switch implementation. ..13
Figure 11. Open loop block diagram. ...16
Figure 12. Closed-loop speed control with the IDCA-10.17
Figure 13. Closed-loop position control block diagram.18
Figure 14. Motor speed profile in control example 1. ...19
Figure 15. Motor speed profile for two consecutive position packets20
Figure 16. SPI bus block diagram..23
Figure 17. SMBus/I2C block diagrams...24
Figure 18. Command data packet structure...26
Figure 19. Return data packet structure...27
Figure 20. PID control block diagram...56

List of Tables
Table 1. Data line definitions for pins X0 - X3. ...9
Table 2. PWR indicator communication flash sequence10
Table 3. PWR indicator configuration flash sequence..10
Table 4. Analog input voltage ranges...21
Table 5. Example CRC values. ..28
Table 6. IDCA-10 hardware error codes. ...53

November, 2010 Rev 1.0 4

1. Overview

1.1. IDCA-10 Product Description
The IDCA-10 is a fully integrated DC servo system comprised of
communication, control logic, and power amplification systems. Figure 1
depicts a block diagram for the IDCA-10. The IDCA-10 possesses a central
microcontroller dedicated to communication and control algorithms. The
IDCA-10 uses 4-wire Serial Peripheral Interface (SPI) or 2-wire SMBus (I2C)
serial bus to communicate with a master device. Other control inputs include
analog input (stand-alone mode) dual encoder inputs and dual limit switch
inputs. The IDCA-10 accepts power from a 9-28 VDC power supply. It also
offers a +5 VDC regulated output for powering external components. An
integrated H-bridge supplies Pulse Width Modulated (PWM) output to drive a
DC brushed motor.

Figure 1. IDCA-10 block diagram.

The IDCA-10 is flexible enough to be used in a variety of applications and
configurations. Figure 2 depicts the IDCA-10 being used with a PC-based

November, 2010 Rev 1.0 5

data acquisition system. In this scenario, an application running the PC uses
the data acquisition hardware to relay data between the PC and the IDCA-10.

Figure 2. PC-based system operation.

Figure 3 depicts one scenario where the IDCA-10 communicates directly with
a separate microcontroller. Data exchanged occurs directly between the
microcontroller and the IDCA-10 on the serial bus. This is a common
scenario where a micro controller system requires amplification and control
hardware to drive a DC motor.

Figure 3. Microcontroller system operation.

Figure 4 illustrates the IDCA-10 being used in stand-alone mode. This unique
feature of the IDCA-10 allows the user to configure the controller for a
particular application, and control a motor with an analog control signal.
Stand-alone mode is particularly useful in applications where a micro
controller or PC systems are not practical.

Figure 4. Stand alone operation.

November, 2010 Rev 1.0 6

1.2. IDCA-10 Software and Firmware

1.2.1. Software

MCT User Interface
The MCT User Interface (MCTUI) is a windows-based application used to
interface to the IDCA-10 using a select group of data acquisition equipment.
The MCTUI supports the following data acquisition hardware manufactured
by LabJack Corporation:

• U12
• U3 LV and U3 HV
• U6 and U6 Pro
• UE9 and UE9 Pro

The MCTUI provides all the tools necessary to properly tune and control an
IDCA-10 from a PC. Please refer to the MCTUI documentation for further
information.

Figure 5. Screen shot for the MCTUI.

MCT UI DLL
TBD

1.2.2. Firmware
The IDCA-10 firmware is responsible for controlling the basic functionality and
motor control operations. Firmware may be updated periodically by simply
downloading the latest firmware version from the MCT website and using the
firmware upgrade utility to reprogram the microcontroller. The firmware
update utility is provided in the MCTUI. See the MCTUI documentation for
further information.

November, 2010 Rev 1.0 7

http://www.labjack.com/
http://www.mocontech.com/

2. IDCA-10 Top Plate
Figure 6 depicts the nameplate on theIDCA-10. All IO and power connections
necessary for operation are made through the screw terminals located at the
sides of the unit. All screw terminals are clearly marked for easy connection.
The following section describes each screw terminals in detail.

Figure 6. IDCA-10 screw terminals.

2.1. Pin Descriptions

2.1.1. Power

+VIN
Power input for the IDCA-10. Connect to the positive terminal on a 9-28 VDC
power supply.

GND
Ground pin for the IDCA-10. Connect to the negative (GND) terminal on a
9-28 VDC power supply or chassis ground. The GND pins provide the
primary ground to the IDCA-10 and motor. Always ensure that a good ground
connection exists and proper grounding techniques are used. Always
connect the GND directly to ground with as short a lead as possible. A 14-
gauge ground lead is recommended for all applications.

+5VO
The +5VO pin is a regulated +5VDC output that can source up to 250 mA
continuous and up to 500 mA intermittent (< 1 minute). The +5V pin may be

November, 2010 Rev 1.0 8

used to power external devices such as encoders, micro controllers, or other
electronic hardware.

2.1.2. Motor

OUT1
Motor output terminal. Connect to power terminal on DC brushed motor.

OUT2
Motor output terminal. Connect to power terminal on DC brushed motor.

2.1.3. Control IO

X0 – X3
Pins X0 – X3 are used for transmitting data between a master device and the
IDCA-10 (slave). The IDCA-10 uses either 4-wire SPI or 2-wire SMBus (I2C)
protocols for communication. Table 1 lists how the serial lines are mapped to
the X0 – X3 pins.

Table 1. Data line definitions for pins X0 - X3.

Pin SPI Line SMBus (I2C) Line
X0 MISO SDA
X1 SCK SCL
X2 NSS Not used
X3 MOSI Not used

2.1.4. AIN
AIN is the analog input line used in stand-alone mode to control the motor.
AIN is only used in stand-alone mode.

EA and EB
Encoder input.

LS1 and LS1
Limit switch inputs.

DGND
DGND is the digital ground for use when interfacing with other electronic
equipment. DGND is internally connected to GND through a fuse to protect
connected devices from large ground currents. Always use the DGND as a
ground reference when interfacing with other electronic equipment.

November, 2010 Rev 1.0 9

2.2. Status Indicators

2.2.1. PWR Indicator
The PWR indicator is a green LED that will turn on solid when power is
applied to the unit. The PWR indicator also reports serial bus and mode
configurations. Hardware configuration is reported by series of flashes at
power-up or on a system reset. The flash sequence is divided into two short
sequences separated by a 1 second pause (LED off). The first flash
sequence indicates the serial bus being used. Two flashes indicate the SPI
bus is configured. Three flashes indicate the SMBus/I2C serial bus is
configured (Table 2). The second flash sequence indicates the IDCA-10
operating mode. Flash sequences can range fro two to eitght flashes,
depending the configured mode. Table 3 lists the flash count and associated
operating modes.

Table 2. PWR indicator communication flash sequence

Flash Count Operating Mode
2 SPI
3 SMBus/I2C

 Table 3. PWR indicator configuration flash sequence.

Flash Count Operating Mode
2 Idle (default)
3 Open-loop
4 Speed control
5 Position control
6 SA, Open-loop
7 SA, Speed Control
8 SA, Position Control

Note:
SA = Stand-alone mode

2.2.2. ERR Indicator
The ERR indicator is used a visual indicator to inform the user an error was
encountered by hardware. Error codes defining encountered problems are
stored in the ErrorReg memory register. See section 5.2 for error code
definitions.

2.3. Electrical Connections
Figure 8 depicts typical wiring connections when operating a motor in open-
loop mode. Encoder signals are not required in open-loop mode, but may be
used to monitor motor speed. Figure 8 depicts typical wiring connections
when interfacing with a motor and an integrated shaft encoder. Encoder
feedback signals are required when operating in speed and position control
modes.

November, 2010 Rev 1.0 10

Figure 7. Typical electrical connections for open-loop control.

November, 2010 Rev 1.0 11

Figure 8. Typical electrical connections for speed and position control.

2.3.1. Analog Input (AIN)
The AIN pin is used for an analog control signal when operating in stand-
alone mode. Stand-alone mode is special operating mode where command
signals are interpreted from the analog input rather than command packets
received via the serial bus. See section 3.5 for details about the AIN line.
Figure 9 depicts a typical connection to the AIN line.

November, 2010 Rev 1.0 12

Figure 9. Typical connection to the analog input line.

2.3.2. Limit Switch (LS1 and LS2)
The limit switch inputs (LS1 and LS2) provide and interface for up to two limit
switches. Limit switches are useful for static motor stops or for implementing
hardware-controlled deceleration when the motor is at a particular location.
Figure 10 depicts a typical limit switch implementation on the IDCA-10.

Figure 10. Typical limit switch implementation.

November, 2010 Rev 1.0 13

Limit Switch Configuration
LS1 and LS2 are disabled by default and must be configured before they are
available for use. Both limit switch inputs are configured using the LIMSTAT,
LS1Rate, and LS2Rate registers. All three registers are ignored by hardware
until the either limit switches are enabled in the LIMSTAT register. Limit
switch configuration allows either switch or both to be enabled at any time by
setting the appropriate bits in the LIMSTAT register. LS1 can also be
configured as a latch for the AIN line for stand-alone mode. See section 5.2
for further details about the LIMSTAT memory register.

LS1Rate and LS2Rate registers must be configured for the respective limit
switch if enabled. The LSxRate register stores the declaration rate the
controller will use to stop the motor when a limit switch event occurs. Valid
declaration rates are 0-255. The LS1Rate register is ignored if LS1 is
configured as a latch for the AIN line.

Limit Switch Functionality
LS1 and LS2 provide hardware controlled motor deceleration when a limit
switch event is detected. A limit switch event occurs when an enabled limit
switch line transitions from logic HIGH logic LOW. Internal pull-up resistors
hold the limit switch lines high if nothing is connected. When using limit
switches, connect the LSx line though a switch to ground so the line is pulled
low when the switch is activated.

Limit switch lines are polled by firmware once every 50ms to detect a HIGH to
LOW transition. Hardware will begin decelerating the motor as soon as the
limit switch event is detected, regardless of what function is being performed.
The controller will decelerate the motor at a rate as defined appropriate
LSxRate register until it comes to a stop.

The value stored in LSxRate defines the amount the controller will decrease
the motor speed until the motor comes to a rest. Motor speed is updated
every 50 ms until the motor stops, and cannot be interrupted once the
process is started.

The declaration rate defined in LSxRate is implemented differently in open-
loop control than in closed-loop control. In open-loop mode the LSxRate
represents a change in PWM duty cycle. In closed-loop control the LSxRate
represents a change in the motor command speed, represented in RPM.
Therefore, the same LSxRate value will behave different depending on the
mode. For example, an LSxRate value equal to 10 will result in a
deceleration of 10% every 50ms in open-loop, but will result in a deceleration
of 10 RPM every 50 ms in closed-loop control. This subtle difference can
lead to drastically different deceleration rates. The user must adjust
accordingly in different operating modes.

November, 2010 Rev 1.0 14

Motor Stop and Limit Switch Reset
Once the controller brings the motor to rest it will post a limit switch message
to the Error queue and begin flashing the Error LED. Determining which limit
switch was activated is determined by reading the value posted in the
ERROR register. A value equal to 236 (0xEC) indicates LS1 was activated
and a value equal to 237 (0xED) indicates LS2 was activated.

The end-behavior of a limit switch event mimics the same behavior as a level-
3 error generated in hardware. That is, the hardware will disable all motor
control and place the motor into a safe state. Communication is not
interrupted when the motor is placed into safe state.

The limit switch must be manually reset once a limit switch event is detected
and the motor is stopped. The following procedure outlines how to reset the
limit switch lines:

1. Verify the error LED is blinking, indicating limit switch activation.

2. Read the value stored in the error queue to determine which limit
switch was activated.

3. Return the activated limit switch line to logic HIGH by opening the limit
switch or allowing the LSx line to float. The limit switch line must be
cleared to prevent the controller from immediately processing the limit
switch again after resetting.

4. Pull the opposite limit switch to logic LOW and hold at that state for
approximately five seconds and then return the line state to logic
HIGH. If LS1 is activated use LS2 to reset. If LS2 is activated use LS1
to reset. The activated limit switch is reset when error LED stops
blinking and lights solid. The error LED will stay lit for two seconds and
then turn off, indicating a return to normal operations.

Note:
The limit switch line used to generate a reset signal must be returned
to logic HIGH while the error LED is lit solid. Failure to do so will result
in the controller detecting a limit switch event on the reset signal line
when it returns to normal operation.

November, 2010 Rev 1.0 15

3. Operating Modes

3.1. Idle (default)
Idle mode is the default mode the IDCA-10 will power-up in if it is not
configured to start in one of the other operating modes. Idle mode is
essentially a start/safe mode. The H-bridge and outputs are disabled, and
communication bus is active, awaiting data packets from the master device.
The IDCA-10 must be in idle mode when configuring the hardware to operate
in any one of the other modes. Hardware must be reset into idle mode if the
user desires to reconfigure from one mode to another, i.e. open-loop to speed
control modes.

3.2. Open-loop Control
In open-loop mode the motor’s speed is driven without respect to any
feedback signals from the motor. In this mode the voltage across the motor’s
terminals and the applied load at the shaft determines the speed. Figure 11
depicts a block diagram representation of open-loop motor control with the
IDCA-10.

Figure 11. Open loop block diagram.

The voltage seen at the motor’s terminals is controlled through Pulse Width
Modulation (PWM) of the supply voltage VIN. The result is scaled version of
VIN, where the scale factor is the duty cycle of the PWM output. For
example, a 50% duty cycle will result in a terminal voltage equal to 50% of
VIN.

Equation 1.

VTERM = PWM DUTY * VIN

Motor speed is proportional to the voltage across its terminals when operating
at no-load conditions. At full voltage (VIN) the motor will run at rated full
speed. When the voltage is at 50% the motor will run at 50% of full speed,
and so on.

Physical loading at the shaft will also determine the motor’s speed at a given
terminal voltage. The exact speed the motor settles at depends on the power
band of the particular motor.

November, 2010 Rev 1.0 16

3.3. Closed-loop Speed Control
Closed-loop speed control expands on the open-loop concepts discussed
above by incorporating a feedback signal from the motor. The feedback
signal reports the motor speed to the controller where it is compared to the
commanded speed. The difference between the command speed and the
actual motor speed (error) is passed on to an internal PID controller. The PID
controller adjusts the PWM duty cycle used to drive the motor. By closing the
control loop with the encode signal, the IDCA-10 will force the motor to
operate at a specified speed. See Appendix A for more details on the PID
controller basic concepts. Figure 12 depicts a block diagram representation
of closed-loop speed control with the IDCA-10.

Figure 12. Closed-loop speed control with the IDCA-10.

3.4. Closed-loop Position Control
Closed loop position control builds off the concepts covered in section 3.3
(speed control). The user should review the speed control section if they are
not familiar with the concepts. The PID constants used in the closed-loop
controller may also be used in the closed-loop position controller. Figure 13
depicts the control block diagram that represents the closed-loop position
controller implemented on the IDCA-10. As shown in the figure, closed-loop
position requires three inputs:

1. Position
2. Max Speed
3. Approach Speed

The value sent to the Position input represents the target motor position
represented in encoder counts. The value used for the Max Speed input
represents the initial speed the motor will start running at represented in
RPM. The Approach speed is the speed the motor will run at as it
approaches it target position, represented in RPM.

November, 2010 Rev 1.0 17

Figure 13. Closed-loop position control block diagram.

The three inputs may seem strange at first, but the use of these three inputs
provides great flexibility. The following example best explains how each input
affects control behavior.

Position Control Example 1
Givens: Shaft encoder resolution = 512 counts/rev
 Target Position = 10.5 Revolutions (shaft)
 Initial speed = 0 RPM
 Max Speed = 500 RPM
 Approach speed 250 RPM

The first step is to calculate the target position in terms of encoder counts.
The value for the Position input is calculated with Equation 2:

Equation 2.

Position = 10.5 rev * 512 counts/rev = 5,376 counts

 The value calculated in Equation 2, Max Speed, and Approach speed are
next sent to the IDCA-10 as command values. Upon execution the motor
will start rotating at 500 RPM. The IDCA-10 will adjust the motor speed so
the motor will be running at the commanded approach speed when it
reaches its destination. The speed is adjusted proportionally to the
distance traveled. For example, the motor’s speed will be at the midpoint
between Max Speed and Approach Speed when the motor has traveled
half the commanded distance. Figure 14 depicts the motor speed profile
that results from the values used in this example.

November, 2010 Rev 1.0 18

Figure 14. Motor speed profile in control example 1.

As Figure 14 shows, the motor starts rotating at 500 RPM and decreases
proportionally to the distance traveled until it reaches its target position.
Once the motor reaches it target the motor will stop and wait to execute
another position command.

The example discussed above illustrates how the IDCA-10 processes a single
position packet. There are some subtleties not discussed in the example that
are important when using this mode:

1. The approach speed does not have to be less than the max speed.

Approach Speed may be set equal to Max Speed or greater than
Max Speed to generate different profiles. Setting Max Speed
equal to Approach speed results in a constant speed. Setting
Approach Speed greater than Max speed causes the motor to
ramp up in speed rather than decrease.

2. The speed profile in Figure 14 shows how the IDCA-10 processes
a single position packet. The motor will be commanded to 0RPM if
no other command packets are stored in the instruction buffer.

The motor speed will transition from Approach Speed to the next
command’s Max Speed without stopping when more than one
command is stored in the instruction buffer. This provides a
smooth transition between data packets and allows the user to
send instructions to execute complex position sequences. Figure

November, 2010 Rev 1.0 19

15 depicts what the motor speed profile would look like when two
position command packets stored in the instruction buffer are
executed in sequence.

Figure 15. Motor speed profile for two consecutive position packets

3. Figure 14 and Figure 15 depict ideal speed profiles for a motor.

The actual speed profiles achieved will ultimately depend on how
well the PID controller is tuned for a given system. The user
should spend ample time tuning their system in speed control
mode before attempting to carry out position control operations.

3.4.1. Error Accumulation
Systems using dead reckoning for precise location must account for
positioning error that accumulates over multiple position commands.
Positioning errors will occur due to natural system latencies and system
inertia. To account for these errors, the IDCA-10 has two data registers that
store error that accumulates during use (ACCERR0 and ACCERR1). The
ACCERR0 register accumulates the error when the motor direction is set to 0.
ACCERR1 accumulates the error the motor direction is set to 1. Both error
registers report the accumulated error in terms of encoder counts. ACCERR0
and ACCERR1 are located at memory addresses 0x002A and 0x002B. See
section 5.1 for further information about these registers.

November, 2010 Rev 1.0 20

3.5. Stand-alone Mode
Stand-alone mode is a special operating mode that uses an analog input
signal to command the motor’s speed and/or position instead of command
packets received on the serial bus. The use of an analog input is useful in
remote applications where digital communications may not be practical.
Stand-alone mode may be used with any of the three modes discussed
above.

3.5.1. Open-loop – Sub Mode
Open-loop stand-alone operation uses the voltage sensed at the AIN pin to
vary the PWM duty cycle to the motor. The AIN input range is mapped over
the desired PWM range. See section 3.5.4 for further details on AIN
configuration.

3.5.2. Speed Control – Sub Mode
Speed control stand-alone operation uses the voltage sensed at the AIN pin
to vary the motor speed set point. The AIN input range is mapped over the
desired speed range. See section 3.5.4 for further details on AIN
configuration.

3.5.3. Position Control – Sub Mode
Position control stand-alone operation uses the voltage sensed at the AIN pin
as a reference to an absolute motor position. The AIN input range is mapped
to motor position such that the maximum and minimum AIN values
correspond to the maximum position bounds in the respective direction. See
section 3.5.4 for further details on AIN configuration.

3.5.4. Stand-alone Configuration Constants

AIN Range
The AIN Range value determines analog input range that gets mapped over
the defined operating parameters. Table 4 lists the available input ranges for
the AIN pin.

Table 4. Analog input voltage ranges.

AIN Mode AIN Range
0 0 to +5 VDC
1 -5 VDC to + 5VDC
2 0 to +10 VDC
3 -10VDC to +10VDC

The midpoint of the AIN Range sets the zero-point for motor operations, and
is used to determine motor direction. Values less than the zero point
correspond to motor direction = 0 and values greater than the zero point
correspond to motor direction = 1. AIN Range is configured in the
ModeConfig memory register (See section 5.2)

November, 2010 Rev 1.0 21

Dead Band
The Dead Band value sets the minimum value AIN must change before the
controller will take action. The Dead Band option will prevent noise on the
AIN line from translating to erratic motor behavior. Dead Band is configured
in the DeadBand memory register (See section 5.2).

Maximum Speed
The Maximum Speed value is used to map the AIN voltage range over a
specified operating range. In open-loop mode Maximum Speed represents a
maximum PWM duty cycle. In speed and position modes Maximum Speed
represents the maximum motor speed represented in RPM. Maximum Speed
is configured in the MaxSpeed memory register (See section 5.2).

Encoder Scale - Position Control Only
Encoder scale is used to set the maximum distance the motor is allowed to
travel. Encoder Scale is configured in the EncScale memory register (See
section 5.2).

Approach Speed - Position Control Only
Approach speed is used to set the speed of the motor when it reaches it
target position. In some cases it may be desirable to set the approach speed
to something other than the maximum speed to minimize overshoot, or
achieve a particular velocity profile. Approach Speed value is configured in
the AppSpeed memory register (See section 5.2).

November, 2010 Rev 1.0 22

4. Serial Communications

4.1. SPI Communications
The IDCA-10 is compatible with 4-wire Serial Peripheral Interface (SPI)
protocol (CPOL = 0, CPHA = 1). Data transmission occurs synchronously
between the master and slave via the MISO and MOSI lines. A clock signal
for transmission timing is provided on the SCK line and a chip enable line is
provided on the NSS line. Multiple slave devices can exist on a single SPI
bus. A dedicated NSS line must be provided to each slave device to prevent
communication interference between devices on the bus. Figure 16 depicts a
typical multi slave implementation on the SPI bus.

Figure 16. SPI bus block diagram.

4.2. SMBus (I2C) Communications
The IDCA-10 is compatible with the System Management Bus Specification
(SMBus) and the Inter Integrated Circuit serial bus (I2C). Data transmission
occurs on a two-wire bi-directional bus. A clock signal is supplied on the SCL
line and data is transmitted on the SDA line. Data transmissions occur as a
write or read operation. In both cases the master must initiate the data
transfer operations. Multiple devices may exist on the SMBus/I2C serial bus.
Slave devices will not respond to read or write request until it detects its
address in the address byte of a data packet. Figure 17 depicts a typical
multi slave implementation on the SMBus/I2C serial bus.

November, 2010 Rev 1.0 23

Figure 17. SMBus/I2C block diagrams.

A common SMBus/I2C bus configuration utilizes two pull-up resistors to pull
the SCL and SDA lines up to +5VDC (Figure 17). The IDCA-10 has internal
weak pull-up resistors on its SCL and SDA lines. External pull-ups are not
necessary if one or more IDCA-10s are the only devices on the bus.
However, external pull-ups may be necessary if the IDCA-10 is sharing the
bus with other devices. The exact resistance value will depend on device
requirements, bus impedance, and transmission rates. It is left to the user to
determine the correct resistor value to meet application requirements.

4.3. Configuring Serial Bus Protocol
Serial bus configuration is stored in bit 0 of the ModeConfig memory register
(See section 5.2). At power-up, hardware checks the ModeConfig register to
determine how to configure the serial bus. A zero in the first bit indicates SPI
mode and a one indicates SMBus/I2C. The default mode at power-up is SPI
(bit 0 cleared). The user may toggle between modes by simply placing a
jumper between LS1 and X2 and cycling power. Hardware will toggle the
appropriate bit in ModeConfig to switch communication protocols. The new
configuration will remain as long as power is applied to the IDCA-10. Cycling
power will reset the bus to its original configuration, unless the jumper is
installed. The current bus configuration must be saved to nonvolatile memory
to make the change permanent.

Note:
Bus configuration is indicated by the first flash sequence at the PWR indicator
when power is first applied. Two flashes indicate SPI. Three flashes indicate
SMBus/I2C.

November, 2010 Rev 1.0 24

4.4. Data Transfer
The IDCA-10 is the slave for any data transfer regardless of operating mode
or serial protocol. Data exchange must be initiated by the master, which
sends a command packet to one of the slaves on the serial bus. In turn, the
appropriate slave device processes the command packet and posts the
results to its internal transmit buffer. Return data remains in the slave’s
transmit buffer until the master requests data from the slave.

SPI Data Transfer
SPI is a synchronous serial protocol where data between the master and
slave is transmitted synchronously on the MISO and MOSI lines. The
synchronous capabilities are not used in IDCA-10 transmissions because of
its command/response operations. Instead, data transfer between the master
and slave occur as two separate transmissions. The following steps illustrate
a typical data exchange between master and an IDCA-10 on the SPI bus:

1. Command packet is constructed and the master sends data packet to
the appropriate slave device. The master device ignores data returned
from the slave during command packet transmission.

2. The master device waits for a minimum of 10 ms to allow the IDCA-10
to process the request and post data to its transmit buffer.

3. The master device transmits a NULL data packet to retrieve data from
the slave’s transmit buffer.

Return data from the slave is processed in 16-byte packets. The data packet
used to retrieve data in SPI mode must also be 16 bytes long because data
retrieval occurs synchronously with data transmission from the master to
slave. A NULL data transmission is the preferred method to retrieve slave
data in SPI mode. See section 4.5.1 for NULL packet definition.

SMBus (I2C)
The SMBus is a bi-directional bus where data is transmitted between the
slave and the master on the SDA line. Data transfers occur asynchronously
and therefore read requests are processed using a second transmission. The
following steps illustrate a typical data exchange between master and an
IDCA-10, using SMBus /I2C:

1. The master device constructs a command packet. The device address
is left-shifted so it exists in the bits seven through one in the address
byte.

2. Clear the least-significant bit in the address byte to indicate a write
operation by the master.

3. Transmit data packet and wait a minimum of 10 ms to allow the IDCA-
10 to process the request and post data to its transmit buffer.

4. The master constructs a NULL data packet and setting the least
significant bit to intricate a read request to the slave.

November, 2010 Rev 1.0 25

5. The master reads 16 bytes from the slave’s transmit buffer.

4.4.1. Command Packet Format
Command data packets are made up of two components, the PDU and the
ADU. The PDU is comprised of function code and configuration data. The
PDU format is always the same regardless off communication protocol being
used. The ADU represents the complete data packet prepended with the
device address and appended with the 16-bit CRC value. Command packet
length varies depending on the instruction being sent. Instruction packet byte
definitions and lengths are provided in section 4.5.

ADU format is essentially the same for SPI and I2C protocols with one minor
exception. The I2C protocol uses the least significant bit of the address byte
to inform the slave of a read or write request. The device address is left-
shifted one bit in I2C communications, but is not in SPI communications. For
this reason valid device addresses are limited to seven bits (0 – 127). The
user must be aware of this to ensure the correct device address is transmitted
with data packet. Figure 18 depicts the structures of a complete command
packet.

Figure 18. Command data packet structure.

4.4.2. Return Data Packet
Data packets returned by the slave are very similar in structure to command
packets. The one major difference between the two is that all return data
constrained to 16 byte packets. Data returned to the master is contained in
the 12 data bytes in the PDU. Unused data bytes are filled with zeroes.
Return data longer than 12 bytes must be divided into multiple packets.
Figure 19 depicts the structure for a complete return data packet.

November, 2010 Rev 1.0 26

Figure 19. Return data packet structure.

Under normal error-free conditions, the IDCA-10 will echo the device address
and function code to the master in a return data packet. A function code
matching the original command function sent by the master indicates the
message was processed without error and PDU contains valid data. Function
codes offset by 128 indicate the hardware detected an error. Additional error
information is reported in the PDU data bytes. Common return errors are
defined in Appendix C.

4.4.3. CRC Algorithm
Every data packet contains two Cyclic Redundancy Check (CRC) bytes to
ensure data integrity during transmission. The CRC calculation uses the
device address and the data packet PDU to generate a 16-bit CRC value.
The CRC value is appended as the last two bytes in the data packet, where
the least-significant byte of the CRC value is the last byte in the transmission.
Once data is received, the master or slave computes a CRC value for the
device address and PDU, which is then compared to the CRC value
transmitted with the packet. Matching transmitted and calculated CRC values
indicates the data packet is valid. Mismatching values indicates the data was
corrupted during transmission and should be disregarded.

The CRC calculation algorithm is a is as follows:

Step 1: Initialize CRC result to 0xFFFF.

Step 2: XOR the data byte with the most-significant byte of the current

CRC result.

Step 3: Left-shift the CRC result one bit.

Step 4: XOR the CRC result with the polynomial (0x1021) if the most-

significant bit is 1. Do not XOR the CRC result with the
polynomial if the most-significant bit is 0.

November, 2010 Rev 1.0 27

Step 5: Repeat steps 3 and 4 for the remaining data bits in the data byte.

Step 6: Repeat steps 2 through 4 for the remaining data bytes in the data

packet. The CRC bytes transmitted with the data packet are not
included in the CRC calculation.

Table 5. Example CRC values.

Data Input (n bytes) CRC Output
0x63 0xBD35
0x8C 0xB1F4
0x7D 0x4ECA

0xAA, 0xBB, 0xCC 0x6CFA
0x00, 0x00, 0xAA, 0xBB, 0xCC 0xB166

4.5. Instruction Packet Definitions

4.5.1. NULL Packet (0x41)
NULL data packet. The null data packet contains zeroes in all data bytes and
is used to retrieve data from the slave device. The IDCA-10 does not execute
any commands when it receives a NULL data packet. Therefore, any data
constrained in the internal transmit buffer will remain unchanged. The NULL
data transmission is also useful for to establish a heartbeat with the IDCA-10
without causing any actions to take place or loss of data in the transmit buffer.

Byte Contents Valid Values (hex)
0 Device Address 0x00-0xEF
1 Function Code 0x41

2-13 Data Bytes 0-11 0x00
14 CRC LSB 0x00 – 0xFF
15 CRC MSB 0x00 – 0xFF

Size = 16 bytes

Transmitted Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The device
address is ignored in SPI Mode

Byte 1 - Function Code
Send 0x41 for a NULL data transfer

Bytes 2-12 NULL Data
Send zeroes.

Byte 13 - CRC MSB
CRC value most-significant byte.

November, 2010 Rev 1.0 28

Byte 14 - CRC LSB
CRC value Least-significant byte.

Return Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The IDCA-10
will return its current address regardless of which serial protocol is being
used.

Byte 1 – Function Code
The IDCA-10 returns a 0x41 if no error occurred or a 0xC1 if an error
occurred.

Byte 2 – 13 Data
Contains data stored in the IDCA-10 transmit buffer if no error is encountered.
Byte 2 will contain an exception error and bytes 3-13 are set to zero if an error
was encountered by hardware.

Byte 14 - CRC MSB
Return packet CRC value most-significant byte.

Byte 15 - CRC LSB
Return packet CRC value Least-significant byte.

4.5.2. Software Reset (0x48)
Forces the IDCA-10 to perform a software reset, which is equivalent to cycling
power on the unit. On reset the IDCA-10 will reboot into Idle mode or a pre
configured mode. All RAM contents are reset to zero.

Byte Contents Valid Values (hex)
0 Device Address 0x00-0xEF
1 Function Code 0x48
2 Option 0x00 - 0xFF
3 CRC LSB 0x00 - 0xFF
4 CRC MSB 0x00 - 0xFF

Size = 5 bytes

Transmitted Data
Device Address – Unique address used to define the IDCA-10 on the serial
bus. The device address is ignored in SPI Mode

Function Code – Send 0x48 for software reset.

November, 2010 Rev 1.0 29

Option – Set to zero to perform a normal reset. Set to a value greater than
zero to force the IDCA-10 to reboot into idle mode. This option is useful if the
unit is set to boot into a pre-configured mode.

CRC MSB – CRC value most-significant byte.

CRC LSB – CRC value Least-significant byte.

Return Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The IDCA-10
will return its current address regardless of which serial protocol is being
used.

Byte 1 – Function Code
The IDCA-10 returns a 0x48 if no error occurred or a 0xC8 if an error
occurred.

Byte 2 – Data
Returns zeroes on success. Byte 2 will contain an exception error and bytes
3-13 are set to zero if an error was encountered by hardware.

Byte 14 - CRC MSB
Return packet CRC value most-significant byte.

Byte 15 - CRC LSB
Return packet CRC value Least-significant byte.

4.5.3. Retrieve Log Data (0x64)
The retrieve log command is used to retrieve log data stored in the 256-byte
log buffer in RAM. The log buffer is separated into 22 subsets for easy
retrieval. Data is stored chronologically, starting at subset 0. Subsets 0-20
are 12 bytes long and subset 21 is 4 bytes long.

Byte Contents Valid Values (hex)

0 Device Address 0x00-0xEF
1 Function Code 0x64
2 Log Data Subset 0x00 – 0x15
3 CRC LSB 0x00 – 0xFF
4 CRC MSB 0x00 – 0xFF

Size = 5 bytes

November, 2010 Rev 1.0 30

Transmitted Data
Byte 0 - Device Address – Unique address used to define the IDCA-10 on the
serial bus. The device address is ignored in SPI Mode

Byte 1 - Function Code – Send 0x64 for to retrieve data.

Byte 2 - Log Data Subset – Send 0x00 to 0x15

Byte 3 - CRC MSB – CRC value most-significant byte.

Byte 0 - CRC LSB – CRC value Least-significant byte.

Return Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The IDCA-10
will return its current address regardless of which serial protocol is being
used.

Byte 1 – Function Code
The IDCA-10 returns a 0x64 if no error occurred or a 0xE4 if an error was
detected.

Bytes 2 to 13 – Log Data
Log data is returned as 6, 12-byte values. The MSB and the LSB are
alternated for each word, starting with the first byte’s MSB at byte 2 and
ending with the sixth bytes LSB at byte 13.

Log data subset 21 only contains 4 bytes (2 words) of log data. Log data is
returned in bytes 2 – 5. Bytes 6-12 are unused and return zeroes.

Byte 2 will contain an exception error and bytes 3-13 are set to zero if an error
was encountered by hardware.

Byte 14 - CRC MSB
Return packet CRC value most-significant byte.

Byte 15 - CRC LSB
Return packet CRC value Least-significant byte.

November, 2010 Rev 1.0 31

4.5.4. Access FLASH (0x65)
The Access FLASH function is used to perform rudimentary operations on
FLASH memory contents.

Byte Contents Valid Values (hex)
0 Device Address 0x00-0xEF
1 Function Code 0x65
2 FLASH Option 0x00, 0x01, 0x04
3 CRC LSB 0x00 – 0xFF
4 CRC MSB 0x00 – 0xFF

Size = 5 bytes

Transmitted Data

Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The device
address is ignored in SPI Mode

Byte 1 - Function Code
Send 0x65 for to access FLASH contents

Byte 3 - FLASH Option

0x00 - Save calibration constants to non-volatile memory.

0x01 - Save the current configuration values to non-volatile memory.
Saving configuration constants to memory forces the IDCA-10 to boot into
the current mode at power-up.

0x04 - Reset configuration constants so the IDCA-10 boots into its idle
mode (factory default) at power-up.

All other values not listed are ignored.

Byte 1 - CRC MSB
CRC value most-significant byte.

Byte 1 - CRC LSB
CRC value Least-significant byte.

Return Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The IDCA-10
will return its current address regardless of which serial protocol is being
used.

November, 2010 Rev 1.0 32

Byte 1 – Function Code
The IDCA-10 returns a 0x65 if no error occurred or a 0xE5 if an error was
detected.

Bytes 2 to13 – Data
Byte 2 will echo the corresponding byte from the transmit buffer and bytes 3-
13 will be filled with zeroes on success.

Byte 2 will contain an exception error and bytes 3-13 are set to zero if an error
was encountered by hardware.

Byte 14 - CRC MSB
Return packet CRC value most-significant byte.

Byte 15 - CRC LSB
Return packet CRC value Least-significant byte.

November, 2010 Rev 1.0 33

4.5.5. Read Registers (0x66)
The Read Registers function reads up to five of the Read-Only or Read/Write
memory registers. Registers addresses are defined in section 5.

Byte Contents Valid Values (hex)
0 Device Address 0x00-0xEF
1 Function Code 0x66
2 Register Count 0x00 – 0x05
3 Reg. Add. 1 - MSB 0x00 – 0xFF
4 Reg. Add. 1 - LSB 0x00 – 0xFF
5 Reg. Add. 2 - MSB 0x00 – 0xFF
6 Reg. Add. 2 - LSB 0x00 – 0xFF
7 Reg. Add. 3 - MSB 0x00 – 0xFF
8 Reg. Add. 3 - LSB 0x00 – 0xFF
9 Reg. Add. 4 - MSB 0x00 – 0xFF

10 Reg. Add. 4 - LSB 0x00 – 0xFF
11 Reg. Add. 5 - MSB 0x00 – 0xFF
12 Reg. Add. 5 - LSB 0x00 – 0xFF
13 CRC LSB 0x00 – 0xFF
14 CRC MSB 0x00 – 0xFF

Size = 15 bytes

Transmitted Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The device
address is ignored in SPI Mode

Byte 1 - Function Code
Send 0x66 to write to memory registers.

Byte 2 - Register Count
Send a value equal to the number of registers to read. Up to five registers
may be read in a single transmission.

Bytes 3-12 Register Addresses
Register addresses to read. The number of addresses must correspond to
the value passed in byte to in order to read all registers contained in the list.
Byte 3 starts the address list with the MSB of the first address. The remaining
bytes alternate between LSB and MSB for each address in the list, ending
with the last register’s LSB. Send zeroes in unused address bytes.

Byte 13 - CRC MSB
CRC value most-significant byte.

Byte 14 - CRC LSB

November, 2010 Rev 1.0 34

CRC value Least-significant byte.

Return Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The IDCA-10
will return its current address regardless of which serial protocol is being
used.

Byte 1 – Function Code
The IDCA-10 returns a 0x66 if no error or a 0xE6 if an error is encountered.

Byte 2-13 – Data
Data bytes from memory registers from the address list transmitted in the
command packet. Memory register contents are returned as two consecutive
bytes starting with the MSB. Data pairs correspond to the order in which they
were passed in the original command packet.

Byte 2 will contain an exception error value and the remaining data bytes will
be set to zero if an error is encountered by hardware.

Byte 14 - CRC MSB
Return packet CRC value most-significant byte.

Byte 15 - CRC LSB
Return packet CRC value Least-significant byte.

Write Registers (0x67)
Use the Write Registers function to write data to up to five read/write memory
registers.

Byte Contents Valid Values (hex)
0 Device Address 0x00-0xEF
1 Function Code 0x67
2 Register Count 0x00 – 0x05
3 Reg. Add. 1 - MSB 0x00 – 0xFF
4 Reg. Add. 1 - LSB 0x00 – 0xFF
5 Data Byte - MSB 0x00 – 0xFF
6 Data Byte - LSB 0x00 – 0xFF
7 Reg. Add. 2 - MSB 0x00 – 0xFF
8 Reg. Add. 2 - LSB 0x00 – 0xFF
9 Data Byte - MSB 0x00 – 0xFF

10 Data Byte - LSB 0x00 – 0xFF
11 Reg. Add. 3 - MSB 0x00 – 0xFF
12 Reg. Add. 3 - LSB 0x00 – 0xFF
13 Data Byte - MSB 0x00 – 0xFF
14 Data Byte - LSB 0x00 – 0xFF
15 Reg. Add. 4 - MSB 0x00 – 0xFF

November, 2010 Rev 1.0 35

16 Reg. Add. 4 - LSB 0x00 – 0xFF
17 Data Byte - MSB 0x00 – 0xFF
18 Data Byte - LSB 0x00 – 0xFF
19 Reg. Add. 5 - MSB 0x00 – 0xFF
20 Reg. Add. 5 - LSB 0x00 – 0xFF
21 Data Byte - MSB 0x00 – 0xFF
22 Data Byte - LSB 0x00 – 0xFF
23 CRC LSB 0x00 – 0xFF
24 CRC MSB 0x00 – 0xFF

Size = 25 bytes

Transmitted Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The device
address is ignored in SPI Mode

Byte 1 - Function Code
Send 0x67 to write to memory registers.

Byte 2 - Register Count
Send a value equal to the number of registers to write. Up to five registers
may be written in a single packet transmission.

Bytes 3-22 Register Address and Data Byte
The register address and data to write are contained in three-byte triples
starting at byte 3. The first byte in each triple is the register address MSB and
the third byte is the data byte to write to memory

Byte 23 - CRC MSB
CRC value most-significant byte.

Byte 24 - CRC LSB
CRC value Least-significant byte.

Return Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The IDCA-10
will return its current address regardless of which serial protocol is being
used.

Byte 1 – Function Code
The IDCA-10 returns a 0x67 if no error or a 0xE7 if an error is encountered.

Bytes 2 -13
Not used. Returns zeroes on success.

November, 2010 Rev 1.0 36

Byte 2 will contain an exception error value and the remaining data bytes will
be set to zero if an error is encountered by hardware.

Byte 14 - CRC MSB
Return packet CRC value most-significant byte.

Byte 15 - CRC LSB
Return packet CRC value Least-significant byte.

4.5.6. Configure IDCA-10 (0x68)
The Configure IDCA-10 function is used to configure the IDCA-10 for a
particular operation mode. Configure IDCA-10 is a general configuration
function and all fields are not used for all modes. Pass zeroes for data not
required for configuration.

Byte Contents Valid Values (hex) Modes
0 Device Address 0x00-0xEF All
1 Function Code 0x68 All
2 Reserved 0x00 All
3 ModeConfig 0x00 – 0xFF All
4 Reserved 0x00 All
5 BrdgConfig 0x00 – 0xFF All
6 Reserved 0x00 All
7 Reserved 0x00 All
8 FreqSF – MSB 0x00 – 0xFF All
9 FreqSF - LSB 0x00 – 0xFF All
10 PIDUpdate - MSB 0x00 – 0xFF SC, PC
11 PIDUpdate - LSB 0x00 – 0xFF All
12 CPR – MSB 0x00 – 0xFF All
13 CPR – LSB 0x00 – 0xFF SC, PC
14 Kp Byte 1 – MSB 0x00 – 0xFF SC, PC
15 KP Byte 2 0x00 – 0xFF SC, PC
16 KP Byte 3 0x00 – 0xFF SC, PC
17 Kp Byte 4 – LSB 0x00 – 0xFF SC, PC
18 Ki Byte 1 – MSB 0x00 – 0xFF SC, PC
19 KI Byte 2 0x00 – 0xFF SC, PC
20 Ki Byte 3 0x00 – 0xFF SC, PC
21 Ki Byte 4 – LSB 0x00 – 0xFF SC, PC
22 Kd Byte 1 – MSB 0x00 – 0xFF SC, PC
23 KD Byte 2 0x00 – 0xFF SC, PC
24 KD Byte 3 0x00 – 0xFF SC, PC
25 Kd Byte 4 - LSB 0x00 – 0xFF PC
26 DeadBand - MSB 0x00 – 0xFF SA
27 DeadBand - LSB 0x00 – 0xFF SA
28 MaxSpeed - MSB 0x00 – 0xFF PC, SAPC
29 MaxSpeed - LSB 0x00 – 0xFF PC
30 AppSpeed - MSB 0x00 – 0xFF PC
31 AppSpeed - MSB 0x00 – 0xFF PC
32 EncScale - MSB 0x00 – 0xFF SAPC

November, 2010 Rev 1.0 37

33 EncScale - LSB 0x00 – 0xFF All
34 CRC LSB 0x00 – 0xFF All
35 CRC MSB 0x00 – 0xFF All

Size = 36 bytes

Note:
OL = Open-loop
SC = Speed-control
PC = Position Control
SA = Stand-alone (all modes)
SAPC = Stand-alone position control

Transmitted Data
Byte 0 - Device Address
A unique address used to define the IDCA-10 on the serial bus. The device
address is ignored in SPI Mode.

Byte 1 - Function Code
Send 0x68 to configure the IDCA-10 for operations.

Byte 2 - Reserved
Send 0x00.

Bytes 3 - ModeConfig
The mode configuration value sets the communication and operating modes
for the IDCA-10.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved AINRNG1 AINRNG0 SAMODE MODE1 MODE0 Reserved SERCFG

AINRNG(1,0) – Analog input voltage range:

00 = 0-5 VDC
01 = ±5 VDC
10 = 0-10 VDC
11 = ±10 VDC

 SAMODE – Stand-alone mode flag:

 0 = IDCA-10 not in stand-alone mode
1 = IDCA-10 operating in stand-alone mode.

Mode(1,0) – Operating mode

00 = Idle (default)
01 = Open loop mode
10 = Speed control mode
11 = Position control mode

November, 2010 Rev 1.0 38

SERCFG – Serial bus configuration bit
0 = SPI

 1 = I2C

Byte 4 - Reserved
Send 0x00

Byte 5 - BrdgConfig
The mode configuration value sets operating parameters for the IDCA-10s H-
bridge. Used in all modes.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BRDGEN Reserved Reserved Reserved Reserved D1 Reserved DIR

BRDGEN – Bridge Enable State:

0 = Bridge Disabled – Sleep mode.
1 = Bridge Enabled

 D1 – Disable Motor Outputs:

 0 = Motor outputs enabled
1 = Motor outputs disabled and in high impedance state

DIR – Motor direction

0 = Positive terminal at OUT 1
1 = Positive terminal at OUT 2

Bytes 6 and 7 - Reserved
Send zeroes.

Bytes 8 and 9 - FreqSF
FreqSF contains the scale value used to calculate PWM frequency. Valid
PWM frequencies are between 1000 Hz and 10 kHz. The PWM scale value
is calculated using the following equation:

Equation 3

FreqSF = 24,500,000 Hz ÷ PWM Frequency

Note:
FreqSF is represented at a 16-bit integer. Round the result from Equation 3
to the nearest whole number.

Byte 10 and 11 – PIDUpdate
This value sets the update period used by the PID controller in milliseconds.
The minimum update period is 10 ms and the maximum is 65,535
milliseconds. PIDUpdate is only required in modes using the PID control
loop. Send zeroes if not used.

November, 2010 Rev 1.0 39

Byte 12 and 13 – CPR
This value represents the number of counts per revolution generated by the
motor encoder.

Byte 14 to 17 – Kp
This value sets the proportional gain constant used by PID controller. Kp is
stored as a floating-point number, using the IEEE-754 standard.

Byte 18 to 21 – Ki
This value sets the integral gain constant used by PID controller. Ki is stored
as a floating-point number, using the IEEE-754 standard.

Byte 22 to 25 – Kd
This value sets the derivative gain constant used by PID controller. Kd is
stored as a floating-point number, using the IEEE-754 standard.

Byte 26 and 27 - DeadBand
DeadBand sets the dead band region for AIN when in stand-alone mode.
Use of a dead band at AIN prevents the controller form changing due to noise
at the analog input. The DeadBand value is calculated according to the
following equation:

Equation 4

DeadBand = Dead band Voltage ÷ 0.005476

For example, to calculate DeadBand value equal to +/-0.1V:

Equation 5

DeadBand = 0.1V ÷ 0.005476 = 18.26 → 18
Note:
DeadBand is represented at a 16-bit integer. Round the result from Equation
5 to the nearest whole number.

Byte 28 and 29 - MaxSpeed
MaxSpeed sets the starting speed, in RPM, for the motor when a new
position command is initiated

Byte 30 and 31 - AppSpeed
AppSpeed sets the approach speed, in RPM, for the motor as it approaches a
target position.

Byte 32 and 33 – EncScale
EncScale sets the encoder scale value used in stand-alone position control
mode. The encoder scale value maps the analog input voltage to specified

November, 2010 Rev 1.0 40

number of motor revolutions. For example, the EncScale value required to
map a 0-5VDC analog input range to 3 revolutions of 512-count encoder is:

Equation 6

(512 counts/rev * 3rev) ÷ 2.5Volts = 614.4 counts/volt → 614

Note:
DeadBand is represented at a 16-bit integer. Round the result from Equation
6 to the nearest whole number.

Byte 34 - CRC MSB (All modes)
CRC value most-significant byte.

Byte 35 - CRC LSB (All modes)
CRC value least-significant byte.

Return Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The IDCA-10
will return its current address regardless of which serial protocol is being
used.

Byte 1 – Function Code
The IDCA-10 returns a 0x68 if no error occurred or a 0xE8 if an error is
encountered.

Bytes 2 -13
The IDCA-10 will echo the corresponding bytes from the command packet on
success.

Byte 2 will contain an exception error value and the remaining data bytes will
be set to zero if an error is encountered by hardware.

Byte 14 - CRC MSB
Return packet CRC value most-significant byte.

Byte 15 - CRC LSB
Return packet CRC value Least-significant byte.

4.5.7. Write To Instruction Buffer (0x69)
Writes MCT Op-code instruction packets to the 256-byte instruction buffer.
MCT Op-code packets are defined in section 4.6.

Byte Contents Valid Values (hex)

November, 2010 Rev 1.0 41

0 Device Address 0x00-0xEF
1 Function Code 0x69

2 – 11 MCT Op-code Sub Packet
(10 bytes) 0x00 – 0x0FF

12 CRC LSB 0x00 – 0xFF
13 CRC MSB 0x00 – 0xFF

Size = 14 bytes

Transmitted Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The device
address is ignored in SPI Mode

Byte 1 - Function Code
Send 0x69 to write to instruction buffer.

Bytes 2 to 11 – MCT Op-code sub packet
Send 10-byte operation code sub packets. MCT op-codes are further defined
in section 4.6.

Byte 12 - CRC MSB
CRC value most-significant byte.

Byte 13 - CRC LSB
CRC value Least-significant byte.

Return Data
Byte 0 - Device Address
Unique address used to define the IDCA-10 on the serial bus. The IDCA-10
will return its current address regardless of which serial protocol is being
used.

Byte 1 – Function Code
The IDCA-10 returns a 0x69 if no error occurred or a 0xE9 if an error is
encountered.

Byte 2 – Bytes Written

November, 2010 Rev 1.0 42

Number of bytes written to the 256-byte memory buffer. The number of bytes
written equals the number of applicable bytes in the op-code sub packet.

Byte 3 – Bytes Available
Number of unused bytes in 256-byte memory buffer.

Bytes 4-13
Returns zeroes.

Note:
Byte 2 will contain an exception code if an error was encountered during
transmission, and remaining data bytes are set to zero.

Byte 14 - CRC MSB
Return packet CRC value most-significant byte.

Byte 15 - CRC LSB
Return packet CRC value Least-significant byte.

4.6. MCT Op-codes Definitions
The MCT operational codes (op-codes) are a set of instructions used to
command the IDCA-10 to complete different tasks. All op-codes are placed
into the 256-byte instruction buffer where they await execution by hardware.
Multiple op-codes may be queued in the buffer to sequentially execute a
complicated set of tasks.

4.6.1. Pause (0x00)
Pauses the internal instruction handler a specified number of milliseconds.
The Pause command is used when a short delay is desired between the
execution of two consecutive op-codes.

Byte Contents Valid Values (hex)
0 MCT Op-code 0x00
1 Period (ms) 0x00 – 0xFF
2 Reserved 0x00
3 Reserved 0x00
4 Reserved 0x00
5 Reserved 0x00
6 Reserved 0x00
7 Reserved 0x00
8 Reserved 0x00
9 Reserved 0x00

Size = 10 bytes

November, 2010 Rev 1.0 43

4.6.2. Set Motor Direction (0x01)
Changes motor direction. Motor direction is set according to the value of the

Contents Valid Values (dec) Valid Values (hex)

MCT Op-Code 1 0x01
Motor Direction 0 – 255 0x00 – 0xFF

Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00

Size = 10 bytes

Motor Direction byte:

0 = Positive terminal at the OUT1 pin.
>0 = Positive terminal at the OUT2 pin.

4.6.3. Enable/Disable Bridge (0x02)
Enables or disables the IDCA-10 H-bridge. The H-bridge goes into sleep
mode and outputs are placed into a high-impedance state when it is disabled.

Contents Valid Values (dec) Valid Values (hex)
MCT Op-code 2 0x02

Enable 0 – 255 0x00 – 0xFF
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00

Size = 10 bytes

Enable:
 0 = H-bridge disabled
 >0 = H-bridge enabled

4.6.4. Disable Motor Outputs (0x03)
Disables H-bridge outputs without placing bridge into sleep mode. Passing a
value greater than zero in the Disable data byte disables the outputs.

Contents Valid Values (dec) Valid Values (hex)
MCT Op-code 3 0x03

November, 2010 Rev 1.0 44

Disable 0 – 255 0x00 – 0xFF
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00

Size = 10 bytes

Disable:
0 = H-bridge outputs enabled

 >0 = H-bridge enabled placed into high impedance state

4.6.5. Update Motor Speed (0x04)
Use to update motor speed.

Contents Valid Values (dec) Valid Values (hex)
Pause Op-code 4 0x04

Motor Speed – MSB 0 – 255 0x00 – 0xFF
Motor Speed - LSB 0 – 255 0x00 – 0xFF

Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00

Size = 10 bytes

Motor Speed:

The value passed for motor speed in open-loop mode is a 12-bit
representation of the PWM duty cycle where 0 corresponds to 0% and
4095 corresponds to 100%. The motor speed value is the motor speed in
RPM for all other modes.

4.6.6. Log Data (0x05)
Configures the internal data logger to record data from one of three sources
at a specified rate.

Contents Valid Values (dec) Valid Values (hex)
MCT Op-code 5 0x05
Data Source 0 – 2 0x00 – 0x02

Sample Period 0-255 0x00 – 0xFF
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00

November, 2010 Rev 1.0 45

Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00

Size = 10 bytes

Data Source:
 0 = Encoder A (Only available in open-loop mode)
 1 = Encoder B
 2 = Motor current

Values greater than two are ignored by hardware

Period:
Data logger period measured in milliseconds (10ms to 255 ms).

4.6.7. Clear Instruction Buffer (0x06)
Clears all pending instructions queued in the 256-byte instruction buffer.
Instructions being processed when this op-code is called are not affected by
this op-code.

Contents Valid Values (dec) Valid Values (hex)
MCT Op-code 6 0x06

Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00
Reserved 0x00 0x00

Size = 10 bytes

4.6.8. Update Motor Position (0x10)
Used to command a motor to a desired position (position mode only). See
section 3.4 for more details on position control mode.

Contents Valid Values (dec) Valid Values (hex)
MCT Op-Code 16 0x10

Max Speed - MSB 0 – 255 0x00 – 0xFF
Max Speed – LSB 0 – 255 0x00 – 0xFF
App. Speed – MSB 0 – 255 0x00 – 0xFF
App. Speed - LSB 0 – 255 0x00 – 0xFF

Distance Byte 1 (MSB) 0 – 255 0x00 – 0xFF
Distance Byte 2 0 – 255 0x00 – 0xFF
Distance Byte 3 0 – 255 0x00 – 0xFF

November, 2010 Rev 1.0 46

Distance Byte4 (LSB) 0 – 255 0x00 – 0xFF
Pos. Config 0 – 255 0x00 – 0xFF

Size = 10 bytes

Max Speed:

Starting speed for motor in RPM.

App Speed:

Approach speed measured in RPM.

Distance:

Command distance to travel measured in encoder counts.

Position Config:

Position configuration byte. See description of PosCurCfg memory
register in section 5.2 for more information.

November, 2010 Rev 1.0 47

5. IDCA-10 Memory Registers

The following section lists the IDCA-10 memory registers accessible using the
Read Registers and Write Registers functions (See sections 4.5.5 and 4.5.7).

5.1. Read Only Registers

Reserved Registers (0x0000 – 0x0025)
Reserved for use by the manufacturer.

TempSense (0x0026)
This register holds the most recent ADC code read from the internal
temperature sensor. Use the following reading to convert the stored value to
a valid temperature:

Equation 7.

Temp (deg C) = 0.182 * TempSense – 305.08

Note:
C → F = C * 9/5 +32

CurSense (0x0027)
This register holds the most recent ADC code for the current reading for the
current sensed at the H-bridge. Convert the register value to current using
Equation 8.

Equation 8.

Current (Amps) = 0.00224 * CurSense

AnlgInp (0x0028)
This register holds the most recent ADC code measured at the AIN terminal.
AIN measurements are only valid when operating in stand-alone mode. Use
Equation 9 to convert the register value to a valid voltage.

Equation 9.

AIN (Volts) = 0.00548 * AnlgInp – 12.225

Reserved Register (0x0029)
Reserved for use by the manufacturer.

November, 2010 Rev 1.0 48

AccErr0 (0x002A)
AccErr0 stores the error accumulated when the motor dir bit in BdgConfig is
set to 0. AccErr will only accumulate error when the AccErr bit is set in the
PosCurCfg register. ACCERR0 is automatically reset to 0x00 when the
AccErr bit is cleared in PosCurCfg.

AccErr1 (0x002B)
ACCERR1 stores the error accumulated when the motor dir bit in BdgConfig
is set to 1. AccErr1 will only accumulate error when the AccErr bit is set in
the PosCurCfg register. AccErr1 is automatically reset to 0x00 when the
AccErr bit is cleared in PosCurCfg.

Reserved Registers (0x002C – 0x00FF)
Reserved for use by the manufacturer.

5.2. Read/Write Registers

DevAdd (0x0100)
Device address. Valid values are 0x00 – 0xEF. The most-significant bit is
ignored.

ModeConfig (0x0101)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Reserved AINRNG1 AINRNG0 SAMODE MODE1 MODE0 Reserved SERCFG

The ModeConfig byte defines operating mode and various operating
parameters:

Bit 7 – Reserved

 Bits 6,5 – Analog input range for AIN

00 = 0-5 VDC
01 = ±5 VDC
10 = 0-10 VDC
11 = ±10 VDC

 Bit 4 – Stand-alone mode enable bit
 1 = Stand-alone enabled
 0 = Stand-alone disabled

 Bits 3,2 – Operating mode bits

00 = Reset/Idle
01 = Open-loop

November, 2010 Rev 1.0 49

10 = Speed control
11 = Position control

Bit 1 – Reserved

 Bit 0 – Defines the communication protocol for the serial bus.
 1 = SMBus (I2C)
 0 = SPI

BdgConfig (0x0102)
The BdgConfig byte defines configuration parameters for the IDCA-10’s H-
bridge.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
BRDGEN Reserved Reserved Reserved Reserved D1 Reserved DIR

Bit 7 – Bridge Enable State:

0 = Bridge Disabled (Sleep mode)
1 = Bridge Enabled

 Bit 6 – Reserved

 Bit 5 – Reserved

 Bit 4 – Reserved

 Bit 3 – Reserved

 Bit 2 – Disable Motor Outputs:
 0 = Motor outputs enabled

1 = Motor outputs disabled and in high impedance state

Bit 1 – Reserved

Bit 0 – Motor direction

0 = Positive terminal at OUT 1
1 = Positive terminal at OUT 2

PosCurCfg (0x0103)
The PosCurCfg byte defines various operating parameters for position control
mode.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Reserved Reserved Reserved Reserved Reserved ACCERRR Reserved DIR

Bit 7 – Reserved

November, 2010 Rev 1.0 50

 Bit 6 – Reserved

 Bit 5 – Reserved

 Bit 4 – Reserved

 Bit 3 – Reserved

 Bit 2 – Accumulate error enable bit
 1 = Error accumulation on
 0 = Error accumulation off

Bit 1 – Reserved

Bit 0 – Direction bit.

0 = Positive terminal at OUT 1
1 = Positive terminal at OUT 2

LogMode (0x0104)
The LogMode byte defines which values are logged when the internal data
logger is started. One of three data sources may be set according to values
stored in this register.

Register Values:
 0x00 – Ignored by hardware

0x01 – Log Encoder A values
 0x02 – Log Encoder B values
 0x04 – Log motor current values
 0x05 – 0xFF Ignored by hardware

LimStat (0x0105)
The limits switch status register defines and reports various operating
parameters when using the limit switch inputs LS1 and LS2.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
LSPROC1 LSPROC0 LSCMPLT LSLTCH Reserved Reserved ENLS2 ENLS1

Bit 7 – Indicates that L.S. 2 was activated. LSPROC1 is automatically set

to 0 once the LS instructions are executed by firmware.
0 = Not processing limit switch 2 code
1 = Processing limit switch 2 code.

November, 2010 Rev 1.0 51

Bit 6 – Indicates that L.S. 1 was activated. LSPROC0 is automatically set
to 0 once the LS instructions are executed by firmware.

 0 = Not processing limit switch 1 code
 1 = Processing limit switch 1 code.

Bit 5 –This bit gets set when the motor is commanded to zero velocity by
the LS code.

 0 = Processing LS code
 1 = LS code complete

Bit 4 - Limit switch latch. LS1 is used as a latch for AIN when set.
LSLTCH is only valid when controller is operating in stand-alone
mode.

 0 = LS not used as a latch
 1 = LS used as AIN latch signal

Bit 3 – Reserved

Bit 2 – Reserved

Bit 1 – Enable Limit switch 1
 0 = LS1 disabled
 1 = LS0 enabled

Bit 0 – Enable Limit switch 0
 0 =LS0 disabled

1 = LS0 enabled

ErrorReg (0x0106)
The error register reports internal errors generated by the IDCA-10. IDCA-10
internal errors are separated into three groups depending on severity:

1. Level 0 - General warnings and do not pose any problems to
operation. Hardware can recover from level 0 errors without
intervention.

2. Level 1 - Mid-level warnings informing the user that problems were

encountered that will lead to undesirable operation if errors persist.
Level 1 errors are indicated by a blinking error LED.

3. Level 2 – High-level errors and will cause hardware to stop the motor

and go into a safe state. Level 2 errors indicate that a problem was
encountered that and require some sort of intervention from the user.
The error LED will turn on solid when a level 2 error is generated by
hardware.

November, 2010 Rev 1.0 52

Table 6. IDCA-10 hardware error codes.

Source Severity

Level
Code Description

SPI/I2C 0 0x01 SPI – Write collision
SPI/I2C 0 0x02 SPI – Receive buffer overrun
SPI/I2C 0 0x03 SPI – SPI timeout

Reserved 0 0x04 – 0x55
Reserved 1 0x056 – 0xAA

Bridge Fault 2 0xAB
Motor I.C. fault line set. Caused by over-
temperature shutdown, short circuit or
other fault mode.

Reset Source 2 0xAC – 0xEB Hardware reset caused by source other
than software reset.

LS1 Set 2 0xEC
LS2 Set 2 0xED

Instruct. Buff 2 0xEE Invalid Op-code
Reserved 2 0xEF – 0xFF

Reserved (0x0107 – 0x011F)
Reserved for use by the manufacturer.

FreqSF (0x0120)
This value defines the scale value used to calculate PWM frequency at the H-
bridge.

DutyCnt (0x0121)
This registers stores the PWM duty cycle currently being used to drive the
motor. The duty cycle is represented as a 12-bit value where 0 corresponds
to 0% duty cycle and 4095 corresponds to 100% duty cycle. Values greater
than 4095 are automatically set to 4095 by firmware.

Distance (0x0122 - 0x0123)
The Distance register stores the command distance represented in encoder
counts. The value stored in the Distance register is only valid when operating
in position control mode. The distance value is represented as 32-bit
unsigned integer. The most-significant word (16 bits) is stored at address
0x0122 and the lest-significant word (16-bytes) is stored at address 0x0123.
Valid values for command distances range from 0 - 4,294,967,295.

DeadBand (0x0124)
The DeadBand register stores the value used to represent the dead band
region for AIN in stand-alone mode.

November, 2010 Rev 1.0 53

MaxSpeed (0x0125)
The MaxSpeed register stores the motor speed (RPM) to use when the
initiating a new move command.

EncScale (0x0126)
The encoder scale value stores the scale value used to map the AIN voltage
to motor position.

AppSpeed (0x0127)
The MaxSpeed register stores the motor speed (RPM) to use when the
approaching a target position.

VelSP (0x0128)
Stores the current motor velocity set point.

CPR (0x0129)
This register holds the number of counts per revolution specified for the motor
encoder.

PIDUpdate (0x012A)
This register stores the update period, in milliseconds, used by the PID
controller.

Reserved (0x012B - 0x012F)
Reserved for use by the manufacturer.

LS1Rate (0x0130)
Stores the deceleration rate used by limit switch 1.

LS2Rate (0x0131)
Stores the declaration rate used by limit switch 2.

FBy (0x0132)
FBy is the y-intercept for the correction equation used when measuring motor
current.

AINy (0x0133)
AINy is the y-intercept for the correction equation used when measuring
voltage at the AIN input.

Ty (0x0134)
Ty is the offset used to correct temperature offsets at the internal temperature
sensor.

November, 2010 Rev 1.0 54

Reserved (0x0134 – 0x014F)
Reserved for use by the manufacturer.

Kp (0x0150 – 0x0151)
Kp stores the proportional gain value use by the PID controller. Kp is stored
as a floating-point number, using the IEEE-754 standard.

Ki (0x0152 – 0x0153)
Ki stores the integral gain value use by the PID controller. Ki is stored as a
floating-point number, using the IEEE-754 standard.

Kd (0x0154 – 0x0155)
Kd stores the derivative gain value use by the PID controller. Ki is stored as a
floating-point number, using the IEEE-754 standard.

FBm (0x0156 – 0x0157)
FBm stores the slope for the correction formula used when measuring motor
current. FBm is stored as a floating-point number, using the IEEE-754
standard.

ASCm (0x0158 – 0x0159)
ASCm stores the slope for the correction formula used when measuring
voltage at AIN. ASCm is stored as a floating-point number, using the
IEEE-754 standard.

Reserved (0x015A - 0xFFFF)
Reserved for use by the manufacturer.

November, 2010 Rev 1.0 55

Appendix A – PID Controller Basics

A PID controller is made up of three components that perform different
mathematical operation on the input signal:

1. Proportional Gain – Multiplies the error signal by a proportional gain
value.

2. Integral Gain – Multiplies the error signal by integral gain and
integrates (sums) the result over time.

3. Derivative Gain – Multiplies the error signal by the derivative gain and
differentiates the result with respect to time.

Figure 20. PID control block diagram.

As shown in Figure 20, the results from each component are summed
together to form the output from the PID block. In the case of the IDCA-10,
the output from the PID block is the PWM duty cycle used to drive the motor.

Proportional Component Effects
The proportional component affects motor rise time when commanded to a
new speed. The proportional component has the largest affect on the PID
output signal when the error is large. The influence on the output signal will
decrease as the motor approaches its set point. Increasing the proportional
gain (Kp) will decrease the system rise time. However, large values for Kp
can cause excessive overshoot and lead to system instability. Start with a
small value for Kp and adjust slowly until the desired rise time is attained.

Integral Component Effects
The integral component affects the steady state error the system. That is, it
determines how close the motor’s speed comes to the commanded set point.
In general, increasing the integral gain (Ki) will decrease the steady state
error. Excessive values at Ki can lead to integrator wind-up, which can lead
to instability when a load is suddenly removed.

November, 2010 Rev 1.0 56

Derivative Component Effects
The derivative component adds damping to the motor system. Damping is
useful when a system exhibits oscillations around a set point. Increasing the
derivative gain (Kd) will damp out oscillations and force the motor to settle
towards the commanded speed. The IDCA-10 inherently adds a significant
amount of damping to the system. Therefore, the derivative gain is typically
not used except in special situations. Set the derivative gain to zero for most
applications.

November, 2010 Rev 1.0 57

Appendix B – IDCA-10 Error Code Definitions

The following table outlines error data contained in a return packet PDU when
the IDCA-10 detects and posts an error. Error values generated by the IDCA-
10 are contained in the second byte of the PDU.

Error Value Description
Illegal Function 0x01 Function code sent by the master is not valid.

Illegal Data Address 0x02
Memory register address being accessed is not valid or
a write operation is being performed on a read-only
register.

Illegal Data Value 0x03 Data sent in command packet was not valid.
Slave Device Failure 0x04 Communication failure or other internal error occurred.

Slave Device Busy 0x06 The IDCA-10 was busy processing another command
and could not process the transmitted command packet.

Memory Parity Error 0x08 The CRC value generated by the slave does not match
the transmitted CRC value. Data corrupted.

November, 2010 Rev 1.0 58

Appendix C – Electrical Characteristics

General
Characteristic Symbol Min Typ. Max Unit

Supply Voltage

+VS

8

--

28

V

H-bridge Output Voltage

OUTn

--

+VS – 0.5

--

V

Continuous Output Current (1)

IOUT

0

--

5

A

Current Limiting Threshold

ILIM

5.0

6.5

7.8

A

Over temperature Shutdown (2)

TMAX

175

--

225

C

Peripheral Voltage (+5VO)
 Iout = 0 A
 Iout = 250 mA
 Iout = 500 mA (3)

+5V0

--
--
--

5.5
5.1
4.6

--
--
--

V
V
V

Peripheral Output Current (3)

IPmax

--

--

500

mA

Quiescent Current
 Drive Enabled (EN = 1)
 +Vs = 9V
 +Vs = 24V
 Drive Disabled (EN = 0)
 +Vs = 9V
 +Vs = 24V

IQ

--
--

--
--

31.5
18.5

26.8
13.5

--
--

--
--

mA
mA

mA
mA

Operating Temperature Range

TOP

-40

--

85

˚C

NOTES:

1. Inability to adequately dissipate heat from the drive unit will result in lower continuous current limit due to
over temperature shutdown limits.

2. H-bridge IC junction temperature.
3. 500 mA loads are not to exceed 30s in duration.

November, 2010 Rev 1.0 59

Control IO
Characteristic Symbol Min Typ. Max Unit

Control I/O voltage limits

VI

-10

--

10

V

Control Input logic levels
 HIGH input voltage
 LOW input voltage

VIH
VIL

2.3
--

--
--

--
1.0

V
V

Control I/O Input Impedance

RI -- 10 -- kΩ

Control I/O Output Impedance

RO -- 10 -- kΩ

Serial Bus Clock Freq
 SPI
 SMBus (I2C)

FSER

300
40

--
--

10,000
10,000

Hz

Analog Input (AIN)

Characteristic Symbol Min Typ. Max Unit

AIN voltage limits

VAI

-12

--

12

V

AIN Input Impedance

RAI -- 100 -- kΩ

November, 2010 Rev 1.0 60

H-bridge
Characteristic Symbol Min Typ. Max Unit

PWM Frequency

fPWM

1

--

10

kHz

Bridge Resistance (1)

RBR

--

0.240

--

Ω

Bridge Current Feedback Signal

IBRIDGE = 0 A
IBRIDGE = 0.5 A
IBRIDGE = 1.5 A
IBRIDGE = 3.0 A
IBRIDGE = 6.0 A

VFB

0
35

286
571

1.143

--
77.5
357
714

1.429

5
156
428
857

1.715

mV
mV
mV
mV
V

Short Circuit Threshold (high-side)

ITHS 11 13 16 A

Short Circuit Threshold (low-side)

ITLS 9 11 14 A

Recommended Minimum Motor

Winding Resistance (2)

+Vs = 28V
+Vs = 18V
+Vs = 12V
+Vs = 8V

RMOT

2.3
1.5
1.0

0.75

--
--
--
--

--
--
--
--

Ω

NOTES:

1. RBR value when the junction temperature at 25 C.
2. Motor winding resistances less than that noted for RMOT can result in excessive bridge currents during

braking, and can cause serious damage to the IDCA-10

November, 2010 Rev 1.0 61

Appendix D - Mechanical Drawings

2.63

2.63

The
GND

Novemb
2.63

1.13

2.25

2.632.25

0.75 TYP

0.19
TAP 4-40 THRU, [6] PL

1. Dimensions shown are in inches.
2. All dimensions ± 0.010”

(BOTTOM VIEW)

NOTE:
DCA-10 heat sink and enclosure are electrically isolated from +VIN and
. Do not use the heat sink as a ground connection.

er, 2010 Rev 1.0 62

Revision History
• November, 2010 – Initial release

November, 2010 Rev 1.0 63

	Overview
	IDCA-10 Product Description
	IDCA-10 Software and Firmware
	Software
	MCT User Interface
	MCT UI DLL

	Firmware

	IDCA-10 Top Plate
	Pin Descriptions
	Power
	+VIN
	GND
	+5VO

	Motor
	OUT1
	OUT2

	Control IO
	X0 – X3

	AIN
	EA and EB
	LS1 and LS1
	DGND

	Status Indicators
	PWR Indicator
	ERR Indicator

	Electrical Connections
	Analog Input (AIN)
	Limit Switch (LS1 and LS2)
	Limit Switch Configuration
	Limit Switch Functionality
	Motor Stop and Limit Switch Reset

	Operating Modes
	Idle (default)
	Open-loop Control
	Closed-loop Speed Control
	Closed-loop Position Control
	Position Control Example 1
	Error Accumulation

	Stand-alone Mode
	Open-loop – Sub Mode
	Speed Control – Sub Mode
	Position Control – Sub Mode
	Stand-alone Configuration Constants
	AIN Range
	Dead Band
	Maximum Speed
	Encoder Scale - Position Control Only
	Approach Speed - Position Control Only

	Serial Communications
	SPI Communications
	SMBus (I2C) Communications
	Configuring Serial Bus Protocol
	Data Transfer
	SPI Data Transfer
	SMBus (I2C)

	Command Packet Format
	Return Data Packet
	CRC Algorithm

	Instruction Packet Definitions
	NULL Packet (0x41)
	Transmitted Data
	Return Data

	Software Reset (0x48)
	Transmitted Data
	Return Data

	Retrieve Log Data (0x64)
	Return Data

	Access FLASH (0x65)
	Return Data

	Read Registers (0x66)
	Transmitted Data
	Return Data
	Transmitted Data
	Return Data

	Configure IDCA-10 (0x68)
	Transmitted Data
	Return Data

	Write To Instruction Buffer (0x69)
	Transmitted Data
	Return Data

	MCT Op-codes Definitions
	Pause (0x00)
	Set Motor Direction (0x01)
	Enable/Disable Bridge (0x02)
	Disable Motor Outputs (0x03)
	Update Motor Speed (0x04)
	Log Data (0x05)
	Clear Instruction Buffer (0x06)
	Update Motor Position (0x10)

	IDCA-10 Memory Registers
	Read Only Registers
	Reserved Registers (0x0000 – 0x0025)
	TempSense (0x0026)
	CurSense (0x0027)
	AnlgInp (0x0028)
	Reserved Register (0x0029)
	AccErr0 (0x002A)
	AccErr1 (0x002B)
	Reserved Registers (0x002C – 0x00FF)

	Read/Write Registers
	DevAdd (0x0100)
	ModeConfig (0x0101)
	BdgConfig (0x0102)
	PosCurCfg (0x0103)
	LogMode (0x0104)
	LimStat (0x0105)
	ErrorReg (0x0106)
	Reserved (0x0107 – 0x011F)
	FreqSF (0x0120)
	DutyCnt (0x0121)
	Distance (0x0122 - 0x0123)
	DeadBand (0x0124)
	MaxSpeed (0x0125)
	EncScale (0x0126)
	AppSpeed (0x0127)
	VelSP (0x0128)
	CPR (0x0129)
	PIDUpdate (0x012A)
	Reserved (0x012B - 0x012F)
	LS1Rate (0x0130)
	LS2Rate (0x0131)
	FBy (0x0132)
	AINy (0x0133)
	Ty (0x0134)
	Reserved (0x0134 – 0x014F)
	Kp (0x0150 – 0x0151)
	Ki (0x0152 – 0x0153)
	Kd (0x0154 – 0x0155)
	FBm (0x0156 – 0x0157)
	ASCm (0x0158 – 0x0159)
	Reserved (0x015A - 0xFFFF)
	Proportional Component Effects
	Integral Component Effects
	Derivative Component Effects

